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ABSTRACT 

So far the simulation of the gas exchange, air/fuel mixture 
formation and burning processes in ICE was usually 
done, for cost reasons, by a combination of 1D models 
for the intake and exhaust manifold and 3D models for the 
cylinder. In order to implement the modeling of the pipe 
flow more exactly and also economically at the same time, 
a new method is presented here, called the quasi-3D 
method. 

After the presentation of the theoretical basis and the de-
tailed description of the modeling technique, the quasi-3D 
method for one-cylinder research engine is applied. The 
simulation results of this application are compared with 
pressure measurements, followed by an evaluation and 
discussion of their accuracy. 

INTRODUCTION 

To estimate the required initial conditions for the simula-
tion of the cylinder air/fuel mixture formation and burning 
processes, one must have knowledge about the quantity, 
the composition and the flow-field of the intake charge. 

Since the computation costs are high for the implementa-
tion of the three-dimensional (3D) simulations of the gas 
exchange processes due to the large number of discreti-
zation elements needed for the manifolds shape, one-
dimensional (1D) simulations are used instead. In this 
case, since the 1D-simulation of the gas flow processes 
cannot describe the whole reality (i.e. the three-
dimensionality) of the gas flow correctly, curvatures, 
asymmetry of the pipes and channels in the simulation 
are disregarded.  

In order to find a compromise procedure for this situa-
tion, a new method is presented that improves the quality 
of the 1D-simulation results noticeably without increasing 
the cost of computation proportionally. This method is 
referred to as the quasi-3D method in the following. It is 

based on the 1D partial differential equations (PDEs), 
which model the unsteady compressible flow process of a 
viscous fluid, and it is introduced now in the following 
steps: 

1. The 3D flow equations are deduced appropriately, as 
to consider the distortion of the velocity distribution 
(size and direction) in each pipe cross-section. Their 
integration over the pipe cross-section results in the 
1D flow equations, the terms of which still contain in-
tegrals of the velocity distribution. In the following 
these integrals are designated as adjustment coeffi-
cients of the 1D flow, since they describe the 3D dis-
tribution of the gas flow velocity. The 1D flow equa-
tions together with the adjustment coefficients form 
the quasi-3D PDEs. 

2. The adjustment coefficients are further treated as 
temporally independent parameters in each pipe 
cross-section. For integration of the quasi-3D PDEs 
the total variation diminishing (TVD) finite difference 
method (as example) is used. The quasi-3D PDEs 
are processed accordingly here, and the application 
of the TVD procedure is presented in detail. 

3. The determination of the adjustment coefficients, 
which consider the three-dimensionality of the gas 
flow, take place with the help of a 3D-simulation. Pro-
grams such as KIVA 3, STAR CD, FIRE, Flow-3D 
etc. can be used for this simulation. The 3D-
simulation is only done for stationary forward and re-
verse flow through the pipes. The resulted 3D flow ve-
locity fields are appropriately processed to produce 
the requested adjustment coefficients. 

4. The quasi-3D method can be used for the accurate 
simulation of manifold flow processes throughout the 
full engine cycle. Thus can be determined the crank 
angle (CA) variations of the flow velocity, pressure, 
density and gas composition in the cylinder inter-
faces and the cylinder initial conditions. 

5. The flow velocity CA-variations together with the ad-
justment coefficients enable determination of the 3D 



flow velocity distributions related to CA in the cylinder 
interfaces. These results together with the CA-
variations of the pressure, density and gas composi-
tion build the boundary conditions for the true-3D cyl-
inder processes simulation. 

Apart from the theoretical basics, which are the topic of 
this report, the quasi-3D method is applied (as an exam-
ple) to a one-cylinder research diesel engine. The com-
parison between simulation results in intake pipe and cyl-
inder and pressure measurements in multi-point intake 
pipe at several engine speeds and loads is shown and 
commented in detail. 

MAIN SECTION 

1. DERIVATION OF THE QUASI-3D PDEs  

For the theoretical development of the 1D PDEs it is help-
ful to use the stream thread notion. In this case the lat-
eral surface of the stream thread is impermeable to mat-
ter, since this area itself is formed by streamlines.   

The classical stream thread notion is generally character-
ized as follows: The variations of all state variables in 
the cross direction of a stream thread are much lower 
than in its longitudinal direction [1]. The quasi-3D 
stream thread notion supplements the classical one by 
accepting that the flow velocity varies significant in the 
cross direction too. 

In case of a pipe flow, since the tube wall (similar to the 
lateral surface of the stream thread) is impermeable to 
matter, the quasi-3D stream thread notion can be put into 
practice perfectly. This notion has the advantage that one 
can take into account the effect of the interior curvatures, 
asymmetry etc. of the pipes and channels on the resulting 
distorted velocity field. 

1.1. Continuity equation   

The continuity equation for a fluid element of the volume 
V  (control volume), whose density is ρ , is 
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in which t  is time. With the help of the Gauss law one 
can expand the LH member of equation (1) to 
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in which the local flow velocity vector v
r

 and the normal 
vector n

r
 to the surface S  of the fluid element are scalar 

multiplied, and the subscript t  denotes partial differentiat-
ing with respect to time. 

Since the lateral surface is impermeable to matter, the 
final integral from equation (2) takes into consideration 
only the cross-section A  of the stream thread. The scalar 
product nv

rr
⋅  to the cross-section A  is identical to the 

local axial flow velocity c . Thus, the continuity equation 
(2) becomes 
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and after partial differentiating with respect to x , indi-
cated by the subscript x , one results 
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Now the average value of the local axial flow velocity c  
over the cross-section A is defined as 

∫ ⋅⋅=
)(tA

dAc
A
1

C . (5) 

Following the stream thread notion, the density is constant 
in any cross-section of the stream thread. The continuity 
equation becomes 

( ) ( ) 0ACA xt =⋅⋅+⋅ ρρ . (6) 

Note: In equation (6) one can replace the density ρ  with 
any other scalar variable Ψ , therefore 

( ) ( ) 0ACA xt =⋅⋅+⋅ ΨΨ . (7) 

 

1.2. Momentum equation along the stream thread axis   

This equation (Euler motion equation) for a fluid element 
expresses the principle of momentum conservation, i.e. 
the momentum variation of the fluid element is caused by 

the mass forces G
r

 (such as gravitation or centrifugal) 

and by the forces P
r

 that only apply to the surfaces of the 
fluid element. 
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This vectorial equation is now projected upon the stream 
thread axis. By means of the Gauss law the LH member 
becomes 
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The gas exchange simulation neglects the mass forces G
r

 
as usual 
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The P
r

 forces are produced from the pressure and the 
friction. Thus the RH member of the equation (8) be-
comes 
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in which Dλ  is the wall friction coefficient and HD  is the 
hydraulic diameter of the pipe. Inserting  (9), (10) and 
(11) into equation (8), partially differentiating with respect 
to x and integrating over the cross-section A gives 
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For simplifying equation (12) the well-known Coefficient 
of Boussinesq β  is now introduced (s. [2], [3]) 
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Thus the momentum equation along the stream thread 
axis becomes 
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or in its conservation form 
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1.3. Energy equation   

Here one must note that the specific kinetic energy of the 
fluid element refers to the local flow velocity v

r
 and not to 

its axial part c . This equation becomes 
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Herein e  is the internal energy per unit volume and q  
the heat flow density across the lateral surface S  of the 
fluid element. Interior heat sources or thermal conduction 
of the fluid along the stream thread remain neglected. 
After partial differentiation with respect to x  and after 
integrating all terms over the cross-section A  results 
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In order to describe the effect of the flow velocity distribu-
tion distortion in the stream thread cross-section A  on 
the variation of the specific kinetic energy the following 
coefficients are introduced 
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Note: If one wants to insert the axial flow velocity c  into 
equation (16) instead of the local flow velocity v

r
, i.e. if 

one wants to assume that the flow velocity is directed only 
along the stream thread axis, then the coefficients β  and 
γ  will have identical calculation formulas. Although their 
formulas are identical, their physical meanings remain 
very different. In this case the coefficient α  also be-
comes simpler and thus identical to the well-known Coef-
ficient of Coriolis (s. [3], [4]). 

The coefficients α , β  and γ  are always greater than 
one. These are designated as adjustment coefficients 
of the 1D flow, since they describe the 3D distortion of 
the gas flow velocity field in a cross-section A  of the 
stream thread, respectively, of the pipe. 

The equation (17) can be processed now with the help of 
the thermal and caloric state equations of the working 
fluid. As an example, the fluid is regarded here as a 
thermally and calorically ideal gas. The suitable thermal 
(20) and caloric (21) equation of state provide the follow-
ing for the specific internal energy e  of the fluid element 
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and thus equation (17) becomes 
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in which κ  means the isentropic exponent, GR  the gas 
constant, k  the heat transfer coefficient, T  the gas tem-
perature and WT  the wall temperature. 

1.4. Continuity equation for a gas component in the ab-
sence of chemical reactions   

If the mass fraction r  of a gas component i  in a gas 
mixture is defined as 

ρ
ρ i

ir =  (23) 

the continuity equation of this component according to 
equation (7) gives 

( ) ( ) 0ACrAr xiti =⋅⋅⋅+⋅⋅ ρρ . (24) 

For example one gas component could be the exhaust 
gas or the gasoline vapor in a mixture of fresh charge 
and exhaust gas. 

1.5. Conservation form of all PDEs 

The PDEs represented above can be brought together in 
a vectorial form as equation (25) shows. The first bracket 
here is the temporal variation of the specific state vari-
ables of the fluid element, the second includes the con-
vection terms of these state variables and the third the so-
called source terms. 
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Since the pipe cross-section A  is not a state variable, its 
partial derivatives can be taken from the LH into the RH 
member. The vectorial form of the equation (25) permits a 
still simpler mathematical representation, in which the 
square brackets can be replaced by the vectors U , F  
and H  

HFU =+ xt , (26) 
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 If all terms in the vector H  would be zero, the equation 
(26) becomes a homogeneous PDE, i.e. 

0FU =+ xt . (27) 



2. NUMERICAL INTEGRATION OF QUASI-3D PDEs BY 
THE FINITE DIFFERENCE METHOD  

At present there are three well-known methods for the 
numerical integration of the above PDEs: the finite-
difference, the finite-element and the finite-volume meth-
ods. Each of these methods contains a set of specialized 
procedures. 

In this case the finite-difference method with the so-called 
total variation diminishing (TVD) method, Lax-Friedrichs 
non-MUSCL (monotonic upstream schemes for conserva-
tion laws) approach for the homogeneous PDE (27) is 
used [5]. In order to consider the effect of the source 
terms from the vector H , the TVD technique is integrated 
in a predictor-corrector procedure. 

2.1. Processing of the homogeneous PDE (27) 

For the application of the explicit Lax-Friedrichs non-
MUSCL approach the homogeneous PDE (27) must be 
appropriately processed. 

The vector F  can be expressed as a function of the vec-
tor U  components kU , with 41k K= . For this purpose 
the density ρ , the average axial speed C  and the pres-
sure p  are processed first 
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and the equation (27) becomes  

( ) 0UFU =+ xt . (29) 

The equation (29) is discretized now with the help of the 
finite-difference method along the time axis t  and the 
space axis x . Let n

jU  be the numerical approximation of 

the solution of equation (29) at xjx ∆⋅=  and tnt ∆⋅= , 
with x∆  being the spatial mesh size (equally spaced, for 
simplicity) and t∆  the time step. 

After the application of the finite-difference method in an 
explicit technique the result for the homogeneous PDE 
(29) is 
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whereas the subscript 
2
1j ±  points at the middle posi-

tions between j  and 1j ± .  The mesh discretization pa-
rameter is 
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with t∆  and x∆  being the respective increments on the 
time and stream thread axes. The vector U  at the time 

1n +  here is the unknown quantity. In order to determine 
it, one must first determine the vector F , i.e. the numeri-

cal flux, at the positions 
2
1j ± .   

A numerical scheme belongs to the TVD techniques, if 
the total variation (TV ) of the state vector U  from the 
homogeneous PDE (27) in all discretization points j  and 
at each time n  fulfills the following condition [5] 
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2.2. Application of the Lax-Friedrichs non MUSCL 
scheme 

In case of second order schemes, the numerical flux F  

can be written at the position 
2
1j ±  utilizing so-called 

local characteristics 
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in which the product FR ⋅  is responsible for achieving 
the second order accuracy. 

2.2.1. Derivation of the right-eigenvector matrix R  

In order to obtain the right-eigenvector matrix R , one 
must first determine the Jacobian matrix B  of F  

( ) ( )UF
U

UB
d
d= , (33) 





















⋅−
⋅

−⋅




 ⋅−−−

=

C0rCr
0CBB

01BC
2

1
0010

ii

3231

22
2

κ

κγκβ
B , (34) 



where 

C
2

12B22 ⋅




 ⋅−−⋅= γκβ , 

3
2

31 C
2
1

1
Ca

B ⋅





 ⋅⋅−−

−
⋅

−= γκα
κ

, 

2
2

32 C
2
3

1
a

B ⋅





 ⋅−⋅+

−
= γκα

κ
, 

and 

TR
p

a G ⋅⋅=
⋅

= κ
ρ

κ  (35) 

is the local speed of sound of the ideal gas in the stream 
thread. The eigenvalues d  of the matrix B  are the solu-
tions of the equation 

( ) 0=⋅− EdBdet , (36) 

where E  means here the suitable identity matrix. The 
adjustment coefficientsα , β  and γ , which describe the 
speed distribution distortion in the cross-section A  of the 
stream thread, make the exact determination of the ei-
genvalues of the matrix B  impossible. 

If all these three adjustment coefficients would be set to 
1=== γβα  in B , i.e. only a 1D-flow model would be 

used and the flow velocity would be uniformly distributed 
and adjusted only by the stream thread axis, then B  be-
comes D1B  
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Their eigenvalues would assume the following expressions 

aC1 −=δ  C2 =δ  aC3 +=δ  C4 =δ  (37) 

These eigenvalues show the local well-known characteris-
tic directions and form the base e.g. for the application of 
the well-known Method of Characteristics. This method 
was originally introduced by Riemann [7]. It was used, as 
a graphical technique, by Jenny [8] to calculate flows in 
engine manifolds, and Seifert [9] and Benson et al. [10] 
employed it, in the form of the Mesh Method of Charac-
teristics, as the first numerical technique to be employed 

in a computer program for this application. 

Assuming that the speed distribution distortion is not very 
high in the cross-section A  of the stream thread, the ad-
justment coefficients α , β  and γ  become the following 
approximate expressions      

( ) ( )D1bD1 2 +⋅⋅+=α , 

( )2bD1 ⋅+=γ , 

( )2D1 +=β , (38) 

where D  describes the deviations of the magnitude of the 
local speed v

r
 and b  the divergence of its direction, both 

with respect to the average axial speed C . The expres-
sions (38) show that the values of the adjustment coeffi-
cients α , β  and γ  converge to one as D  approaches 
zero. If one sets the expressions (38) into equation (34) 
and these again into the equation (36) one obtains 

( ) D1
0D
D BB =

→
 lim , i.e. in this case the Jacobian matrixes B  

and D1B  possess identical eigenvalues (37). 

One can determine now the right-eigenvector matrix D1R  
of the Jacobian matrix D1B . 
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Between the Jacobian matrix D1B , its right-eigenvector 

matrix D1R  and its inverse matrix 1
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−R  
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(40') 

one applies 

?RBR =⋅⋅−
D1D1

1
D1 , (41') 

where ?  is the diagonal matrix of the eigenvalues kδ , 
with 41k K= , from equation (37) 
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Note that D1R  diagonalizes the Jacobian matrix D1B  but 
not B . One must also note that the product 

2
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j
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j ++
⋅ FR  

influences equation (32) much less when defining the 
numerical flux 

2
1

j+
F  than the sum 1jj ++ FF , since this 

product is nearly proportional to the difference 1jj +− FF . 

This fact shows that the errors caused by application of 
D1R  instead of R  in the equation (32), will have a low 

impact on the accuracy of the scheme.  

Although at present no exact solution for R  from 

?RBR =⋅⋅−1  (41) 

is known, one can further reduce the errors mentioned 
above (with the use of D1R  instead of R ) if  
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and its inverse matrix 
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are used instead of R  and 1−R  in the equation (41). 

The resulted equation ?RBR =⋅⋅−
D3q

1
D3q  as nearest 

approximation of the equation (41) can be brought into 
the form 
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The following notes are to be made here:  

• In the LH member of the equation (41'') only the ad-
justment coefficient α  appears as opposed to in 
equation (41), i.e., β  and γ  disappear together. 

• The equation (41'') is valid only, if ω  is zero or very 
small. In fact the magnitude of ω  is small because α  
and κ  are close to one. 

• The matrices in the equation (41'') possess an identi-
cal determinant, and this happens independently of 
the α , ω  and κ  values. 

• The approximation D3qR  is closer to the exact matrix 

R  from equation (41) than D1R . 

2.2.2. Derivation of the right-eigenvector matrix R  to 

the position 
2
1j +  

Independently of using of D1R , D3qR  or any other form 

instead of R  in equation (32) further means 
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The vector 
2
1

j+
U  can be defined either roughly as the 

arithmetic average value between jU  and 1j+U  or much 

more accurately with the help of the so-called average 
value procedure of Roe [11]. The procedure of Roe sup-
plies the correct average, even if it is applied on different 
sides of a shock wave or of another discontinuity. Roe's 
averaged state for the 1D PDE and for a perfect gas for 
example is discussed in reference [5]. In order to deter-
mine Roe's averaged state for the quasi 3D-flow model 
equation (33) is discretized 
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The components of the Jacobian matrix B  are now the 
averaged values of the state variables. The vectorial equa-
tion (44) contains four scalar equations. The first one is 
easily fulfilled. In order to be able to process the other 
three scalar equations, the following positive auxiliary pa-
rameter has to be introduced 
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Two solutions result for the axial speed from the second 

scalar equation of (44) at the position 
2
1j ±  

ε

ε

+

⋅+
= +

+ 1

CC
C 1jj

2
1

j
 

ε

ε

−

⋅−
= +

+ 1

CC
C 1jj

2
1

j
. 

(46) 

(46') 

From these there is the benefit that (46) have not un-
steadiness (because 0>ε ) and for this reason further 
only it is applied. 

From the third scalar equation of (44) it results for the 
averaged value of the specific total enthalpy 
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where for a perfect gas there is defined as follows  
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Equation (47) may be applied only in the case 
0CC 1jj ≠− + . Otherwise, i.e. when 0CC 1jj =− + , the 

unsteadiness from the equation (47) is to be treated ac-
cordingly. For example 
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Note here that expression (47') represents the exact Roe's 
averaged specific total enthalpy only if 1=ε . 

With help of (47) and (48) one can now also determine 
Roe's averaged value of the local speed of sound 
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The fourth scalar equation of (44) provides Roe's aver-
aged value of the mass fraction of a gas component 
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Nevertheless, one question still remains unanswered: 
Which value does 

2
1

j+
κ  take? As an example one sup-

poses the following situation: 

Inside the inlet valve port there is only pure air, thus there 
the fraction of the exhaust gases (index E) is 0r

akeE =
int

. 

Inside the cylinder are only exhaust gases and thus the 
share of the exhaust gases is 1r

cylE = . If the inlet valve 

would open and the pressure of the exhaust gases in the 
cylinder would be higher than in the intake pipe (the tem-
perature normally likewise), then the exhaust gases flow 
from the cylinder into the inlet valve port. One can imag-
ine in this situation that the air and exhaust gases do not 
mix themselves immediately and completely and thus a 
discontinuity in the fluid composition in the intake pipe 
between j  and 1j +  occurs, where 0r

jE =  (only air) 

and 1r
1jE =

+
 (only exhaust gases). For deriving 
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one must first determine the specific isobaric thermal ca-

pacity 
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for example 
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One can see that the state variables from equation (47), 
(49), (50) and (51) depend on each another. For example 
the total enthalpy, the isentropic exponent, the tempera-
ture and the speed of sound can be determined at the 
same time by an iterative calculation. In order to achieve 
the convergence, one or two iterations would be suffi-



cient, if as initial value e.g., the arithmetic average values 
of the temperature or of the isentropic exponent between 
j  and 1j +  will be used. 

Now all necessary state variables for calculation of 
2
1j

R
+

 

are available. 

2.2.3. Derivation of the vector F  at the position 
2
1j +  

The final term of the equation (32), the vector F  is ex-
plained in what follows. For a second order upwind TVD 
scheme the components kφ  of the vector F  are [5] 
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The function σ  for a variable z  is    
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expresses the adjustment for the fulfillment of the entropy 
balance concerning the variable z  (s. [5] for more de-
tails). 

For example, for an unsteady flow the parameter 01 =ε  
is recommended, i.e. 

( ) zz =ψ . (54') 

In the equation (52) the variables kθ  are the components 
of the vector 
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and the function ξ  is 













=

≠
−











=

+

+

+

+

++

    if

    if

0?0

0?

2
1j

2
1j

2
1j

j
2
1j

2
1

j
2
1

j

k

k
k

kk

kk
θ

µµ

δσξ . (56) 

The function µ  is a so-called limiter in the TVD method 
and can be selected in different variations, e.g. 
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where the minmod function for two variables x  and y  is 
defined as 

( ) ( ) ( )( )( )xsgnyxmin,0maxxsgny,xmodmin ⋅−=  ,   (58) 

and ( )xsgn  denotes the sign of the variable x . 

In case of a high-resolution Lax-Friedrichs scheme the 
function ψ  becomes simple 

λ
ψ 1= . (54') 

2.3. Treatment of the non-homogeneous PDE (26)   

For the integration of the non-homogeneous PDE (26) - 
that describes a so-called problem containing source 
terms - a splitting method is used. 

2.3.1. Processing of the source term H  

The processing of the source vector H  from the equation 
(26.3) is the same as for the vector F  shown already 
above. The Jacobian matrix D  of the vector 
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2.3.2. Application of the first step of the predictor-
corrector method 

In this step only the temporal change of the state vector 
U  caused by the source vector H  is considered during 
the first temporal half step width, i.e., from the PDE (26) 
only HU =t  remains. The Euler discretization for the first 
temporal half step width now supplies 
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Furthermore, the change of the state vector U  after the 
first step (high index I ) becomes 
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In order to be able to determine it, one must first deter-

mine the source vector H  at the time 
2
1n + . For this 

purpose its differential 
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is discretized on the time axis for a half step width 
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If one now inserts the equation (65) into (63) and resolves 
it after U∆  one gets 
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and thus after the first step of the predictor-corrector 
method 
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where the exponent 1−  in equation (66) denotes the in-
verse of the matrix resulted in the brackets. 

2.3.3. Application of the second step of the predictor-
corrector method 

Now only the integration of the homogeneous PDE (27) 
on the total temporal step width t∆  is accomplished, 
where in equation (30) IU  is inserted instead of the state 
vector nU  
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2.3.4. Application of the third step of the predictor-
corrector method 

Now, in this final step again only the change of the state 
vector U  caused by the source vector H  during the 
second temporal half step width is considered 
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and thus at the time 1n +  the following results after the 
complete application of the predictor-corrector method 

II
j

II
j

1n
j UUU ∆+=+ . (70) 

 



3. PRESENTATION OF THE SIMULATION RESULTS 
AND THEIR COMPARISON WITH THE MEASURE-
MENTS     

3.1. Data of the experimental engine and arrangement of 
the measuring points 

For validating the simulation results a "AVL 520" one-
cylinder research engine of the laboratory for Power En-
gineering, Piston and Turbo Machines of the University of 
Applied Sciences Hamburg was used. Some engine data 
can be taken out of the following table and Figure 1. 

Bore Stroke Vol. Comp. Ratio 
120 mm 120 mm 15.85 

 

Figure 1: Valve elevation and valve discharge coefficient curves of the 
AVL 520 engine 

The quasi-3D method introduced above is now applied to 
the simulation of the gas exchange processes. The simu-
lation results and the pressure measurements are pre-
sented here only for the flow in the intake pipe. The ar-
rangement of all measuring points is represented in the 
Figure 2. 
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Figure 2: Arrangement of all measuring points. 

The comparisons between the simulation results and 
pressure measurements in the intake pipe are done only 
for measuring points 2 and 4 for space reasons. The 
measurements were accomplished in several series and 
partially repeated, first of all, because of the limited num-
ber of only four input channels of the pressure indicating 
system and, second, for accuracy reasons [6]. 

Figure 3 shows the 3D computing mesh of the intake pipe 
and intake port segment, i.e., between the flexible join 
tube and the inlet valve (s. Figure 2), where some typical 
cross-sections and pressure measuring points are mark-
ing. 

 

Figure 3: Intake pipe segment and inlet port mesh with typical cross-
sections and pressure measuring points. 

3.2. Computing of the adjustment coefficients 

For computing of the adjustment coefficients α , β  and 
γ  the 3D-flow simulation program STAR CD is used. This 
simulation is accomplished only for a compressible turbu-
lent stationary forward and reverse airflow through the 
intake pipe and inlet port. The flow speed vectors in the 
cross-sections mentioned above are represented in 
Figure 4. 

  

A-A B-B 



 
 

  

 
Figure 4: Flow speed vectors in the cross sections shown in Figure 3. 

Using these simulation results and the definition of the 
adjustment coefficients from the equations (13), (18) and 
(19) one obtains the variations from Figure 5 for the ad-
justment coefficients α , β  and γ . 

3.3. Comparison between simulations and measurements 
and between quasi-3D and 1D simulation methods 

The adjustment coefficients are now used in quasi-3D 
simulation as input data; therefore the simulation of un-
steady compressible flow can be accomplished. 

Since the start conditions in the pipes and cylinder are 
unknown when simulation is starting, they are arbitrarily 
selected. In this case several operating cycles must be 
simulated in each stationary operating point of the engine 
(constant speed and load). Thus the start conditions in 
pipes and in the cylinder are renewed by the final states 
of the previous operating cycle in order to achieve the 
convergence. 

 

Figure 5: Adjustment coefficients α , β  and γ  along the intake pipe 
segment for the stationary forward flow.  

In order to allow the comparison with the experiments, the 
environment conditions present during the measurement 
and the engine speed are used as input data for the 
simulations. The comparisons are done in several engine-
operating points (EOP) as in Figure 6. 

 

Figure 6: Engine operating points (EOP) map 

The analysis of all pressure variations at the measuring 
points 2 and 4 displayed in the Appendix shows good 
agreement between simulations and experiments. Some 
minor differences occur in any EOP because: 

F-F E-E 

C-C D-D 

G-G 



a) the supplementary (disregarded in model) wall vibra-
tion, wall elasticity and wall friction due to the flexible 
joint tube between the measuring points 1 and 2 (s. 
Figure 2), 

b) only the intake pipe segment from Figure 3 and 
Figure 5, i.e. between the flexible joint tube and inlet 
valve, is simulated with the quasi-3D method and the 
remainder with the 1D method, and 

c) no other local loss coefficients for the entire intake 
pipe (quasi-3D segment and 1D remainder) are used 
in this case. 

Note that the combination from b) is chosen here first for 
easier comparison of the simulation methods, and second 
because only within this segment it is meaningful to insert 
the interface to the true-3D model. For this reason the 
differences between quasi-3D and 1D simulation results 
originate (only) from the influence of the adjustment coef-
ficients from Figure 5.  

 

Figure 7: Comparisons between quasi-3D and 1D simulation methods by 
EOP 46. 

Two comparisons between 1D (with adjustment coeffi-
cients 1,, =γβα ) and quasi-3D (with the adjustment co-
efficients from Figure 5) simulation methods are made by 
EOP 46 (s. Figure 7) and 51 (s. Figure 8).  

The comparison shows that the quasi-3D model works 
better and closer to the experiments and that without any 
adapted local loss coefficients. Although the improvement 
seems to be small, one must note here (because of the 
simplicity of the intake pipe geometry) that even the 1D 
method works in this case quite well. On the other hand 
only a segment of this pipe is treated here with the quasi-
3D method as mentioned. 

 

Figure 8: Comparisons between quasi-3D and 1D simulation methods by 
EOP 51. 

One expects that the differences between quasi-3D and 
1D simulations will be more significant in case of compli-
cated pipe geometry, pipe junctions and manifolds.  

The quasi-3D method allows one to take into considera-
tion the real distribution of losses along the pipes (as cur-
vatures, asymmetry of the pipes and channels etc). On 



the contrary the 1D method requires artificial concentra-
tion of the distributed losses in some cross sections, 
which are treated during the simulation as discontinuity 
interfaces or boundaries [12]. On one hand, the treatment 
of the boundaries is very time-consuming and causes 
convergence problems frequently. On the other hand the 
simulation results are inaccurate close to the boundaries. 
This fact becomes more critical because of the complex-
ity of modern manifolds, which requires inserting a series 
of boundaries along a pipe. 

CONCLUSION 

The quasi-3D method is introduced here as a compro-
mise between the 1D and true-3D methods. This new 
method improves the quality of the 1D-simulation results 
noticeably, without increasing the cost of computation 
proportionally. 

The quasi-3D method is suited for two application kinds: 

1. It can be used only for the accurate simulation of 
manifold flow processes for providing the flow veloc-
ity, pressure, density and gas composition in the cyl-
inder interfaces needed in the true-3D cylinder proc-
ess simulations. 

2. This method can be employed as a more accurate 
solution compared with the classical 1D method for 
gas exchange process simulations of ICE. 

The first application type closes the development loop. 
Such a closed loop may be composed of CAD-design, 
exported geometry, mesh generation, stationary true-3D 
simulation, adjustment coefficient computation, instation-
ary quasi-3D simulation, instationary true-3D simulation, 
results evaluation and again CAD-design. The use of the 
quasi-3D method in such a development loop permits to 
take into consideration the refined geometry of the mani-
folds better as before and therefore to reduce considera-
bly the measurement efforts and development costs. 

The second application type is natural. One must con-
clude that for the treatment of multipipe junctions with the 
quasi-3D method an appropriate procedure is needed. 
The adjustment coefficients must be computed in this 
case for all flow possibilities (flow direction and some flow 
rates) through these multipipe junctions, i.e., the station-
ary true-3D simulation must be carried out several times. 
This expense remains still low because in this stationary 
simulation only the exit boundary conditions are changed 
and the computing time makes no difference in this case. 
The accuracy gain of the quasi-3D method will be impor-
tant because of the use of appropriate adjustment coeffi-
cients, which take into consideration the refined real ge-
ometry of these multipipe junctions. 

For even better accuracy it is recommended to compute 
the adjustment coefficients for some forward and reverse 

flow rates through all the pipes. 
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APPENDIX 

In the Appendix, only the pressure variations comparison 
at the measuring points 2 and 4 (s. Figure 2 and Figure 
3) at seven engine speeds are presented. Presented 
supplementary are the pressure, flow speed, density and 
exhaust gas volume fraction variations as 3D-diagrams, 
i.e. as isometric illustrations in the distance-crankangle 
(distance-time) plane. In all these 3D-diagrams the sur-



face of the state variable (e.g. the pressure) as well auxil-
iary variations are presented according to the notations 
from Figure 9. 

 

Figure 9: 3D-diagram of a state variable (here pressure) in the intake pipe 
as an isomeric illustration in the distance-crankangle (distance-time) 
plane. 

The 3D-diagrams of the exhaust gas volume fraction 
(EGVF) show the back flows within intake pipe perfectly, 
and so one can find out when and how intensive these 
back flows occur. For example the back flows during the 
valve overlap are missing at EOP 39 and 44, are moder-
ate at EOP 09 and 30, and are strong at EOP 16, 23, 37, 
46 and 51. The explanation for the back flows can be 
found, if one analyzes the 2D- and 3D-diagrams of the 
intake pressure. The 3D-diagrams for the density show a 
valley (because of the high exhaust gas temperature) 
when the back flows occur, while the 3D-diagrams of the 
flow velocity show negative values. 

A second back flow could appear when the inlet valve is 
closing if the cylinder pressure exceeds the intake pipe 
pressure. This occurrence can be observed at all pre-
sented EOP. The intensity of this second back flow can 
be captured once again from the 3D-diagrams of the ex-
haust gas volume fraction (EGVF). The 3D-diagrams of 
the flow velocity and density only confirm these occur-
rences. 

For the ICE with extern gas mixture formation (for exam-
ple, MPI gasoline engines) it is useful to have the 3D-
diagrams of the flow velocity one's disposal. With its help 
one can optimize for example the location choice of the 
gasoline injectors and the intake pipe shape. If supple-
mentary a gasoline spray model is added and a new state 
variable as gas component for the gasoline vapor mass 
fraction is introduced, one can perform this tuning even 
better. 









 


