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ABSTRACT 

The purpose of this paper is to present a new computa-
tion method of the unsteady compressible flow process of a 
viscous fluid through pipes and manifolds for example of 
internal combustion engines (ICE). This method can describe 
the influence of the gas flow three-dimensionality correctly 
(i.e. curvatures, asymmetry of the pipes and channels etc.), 
that improves the simulation quality noticeably (compared to 
the classical 1D-simulation) without increasing the cost of 
computation proportionally (compared to the classical 3D-
simulation). This method is referred to as the quasi-3D 
method in the following. Apart from some theoretical basics, 
the quasi-3D method is applied (as an example) to a one-
cylinder research diesel engine. The comparison between 
simulation results in intake pipe and cylinder and pressure 
measurements in multi-point intake pipe at one engine speed 
and two loads is shown and commented. 

 
INTRODUCTION 

The design of intake and exhaust ICE manifolds has been 
an important application of unsteady fluid dynamics for many 
years. A first purpose of these simulations is the optimizing of 
the cylinder filling, the accordance with the turbocharger etc. 
about wide load and engine speed intervals. A second purpose 
is the estimating of the required initial conditions for the 
simulation of the in cylinder air/fuel mixture formation and 
burning processes, which must have knowledge about the 
quantity, the composition and the flow-field of the intake 
charge. 

Since the computation costs are high for the implementa-
tion of unsteady three-dimensional (3D) simulations of the 
gas exchange processes usual one-dimensional (1D) simula-
tions are used instead. In this case, since the 1D-simulation of 
the gas flow processes cannot describe the whole reality (i.e. 
the three-dimensionality) of the gas flow correctly, curva-
tures, asymmetry of the pipes and channels in the simulation 
are disregarded.  

In order to find a compromise procedure for this situa-
tion, the quasi-3D method is introduced. It is based on the 
1D partial differential equations (PDEs), which models the 
unsteady compressible flow process of a viscous fluid and it 
is introduced now in the following steps: 
1. The 3D flow equations are deduced appropriately, as to 

consider the distortion of the velocity distribution (size 
and direction) in each pipe cross-section. Their integra-

tion over the pipe cross-section results in the 1D flow 
equations, the terms of which still contain integrals of the 
velocity distribution. In the following, these integrals are 
designated as adjustment coefficients of the 1D flow, 
since they describe the 3D distribution of the gas flow 
velocity. The 1D flow equations together with the ad-
justment coefficients form the quasi-3D PDEs. 

2. The adjustment coefficients are further treated as tempo-
rally independent parameters in each pipe cross-section. 
For integration of the quasi-3D PDEs the total variation 
diminishing (TVD) finite difference method (as example) 
is used. The quasi-3D PDEs are processed accordingly 
here, and the application of the TVD procedure is pre-
sented in detail. 

3. The determination of the adjustment coefficients, which 
consider the three-dimensionality of the gas flow, take 
place with the help of a steady 3D-simulation. Programs 
such as STAR CD, FIRE, KIVA 3, Flow-3D etc. can be 
used for this simulation. The 3D-simulation is only done 
for steady forward and reverse flow through the pipes. 
The resulted 3D flow velocity fields are appropriately 
processed to produce the requested adjustment coeffi-
cients. 

4. The quasi-3D method can be used now for the accurate 
simulation of manifold flow processes throughout the full 
engine cycles.  

 
DERIVATION OF THE QUASI-3D PDES 

For the theoretical development of the 1D PDEs it is 
helpful to use the stream thread notion. In this case the lateral 
surface of the stream thread is impermeable to matter, since 
this area itself is formed by streamlines.  The classical stream 
thread notion is generally characterized as follows: The varia-
tions of all state variables in the cross direction of a stream 
thread are much lower than in its longitudinal direction [13]. 
The quasi-3D stream thread notion supplements the classi-
cal one by accepting that the flow velocity varies significant 
in the cross direction too. 

In case of a pipe flow, since the tube wall (similar to the 
stream thread lateral surface) is impermeable to matter, the 
quasi-3D stream thread notion can be put into practice per-
fectly. This notion has the advantage that one can take into 
account the effect of the interior curvatures, asymmetry etc. 

   



of the pipes and channels on the resulting distorted velocity 
field. 

 
Continuity equation   

The continuity equation for a fluid element with the den-
sity ρ  is [4] 

( ) ( ) 0ACA xt =⋅⋅+⋅ ρρ . (1) 

in which the subscripts t  and x denotes partial differentiat-
ing with respect to time and to space, and  
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1C . (2) 

is the average value of the local axial flow velocity c  over 
the stream thread cross-section . A
 
Momentum equation along the stream thread axis   

The momentum variation of the fluid element is caused 
by the mass forces (here negligible) and surface forces. This 
vectorial equation is now projected upon the stream thread 
axis and consequently becomes [4] 
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in which Dλ  is the wall friction coefficient, p  the pressure, 
 the hydraulic diameter of the pipe and HD
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the well-known Coefficient of Boussinesq β  (s. [2], [3]). 
 
Energy equation   

Here one must note that the specific kinetic energy of the 
fluid element refers to the local flow velocity v

r
 and not to its 

axial part c . This equation processed for an ideal gas be-
comes [4] 
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in which κ  means the isentropic exponent,  the heat trans-
fer coefficient, T  the gas temperature and T  the wall tem-
perature. For describing the effect of the flow velocity distri-
bution distortion in the cross-section  the coefficients  

k
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are introduced. If one wants to insert the axial flow velocity 
c  into equation (5) instead of the local flow velocity v

r
, i.e. 

if one wants to assume that the flow velocity is directed only 
along the stream thread axis, then the coefficients β  and γ  
will have identical calculation formulas. Although their for-
mulas are identical, their physical meanings remain very dif-
ferent. In this case, the coefficient α  also becomes simpler 
and thus identical to the well-known Coefficient of Coriolis 
(s. [3], [5]). 

The coefficients α , β  and γ  are always greater than 
one and are designated as adjustment coefficients of the 1D 
flow, since they describe the 3D distortion of the gas flow 
velocity field in a cross-section A  of the stream thread, 
respectively, of the pipe

 
. 

 
Conservation form of all PDEs   

The PDEs represented above can be brought together in a 
vectorial form as [4]  

)()( xt UHUFU =+ , (8) 
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in which  is the gas constant. GR
If all terms in the source terms vector H  would be zero, 

the equation (8) becomes a homogeneous PDE, i.e. 

0UFU =+ xt )( . (9) 

   



NUMERICAL INTEGRATION OF QUASI-3D PDES 
In this case the finite-difference method with the so-

called total variation diminishing (TVD) method, Lax-
Friedrichs non-MUSCL (monotonic upstream schemes for 
conservation laws) approach for the homogeneous PDE (9) is 
used [12]. In order to consider the effect of the source terms 
from the vector H , the TVD technique is integrated in a pre-
dictor-corrector procedure [12], [4]. 

 
Processing of the homogeneous PDE  

The equation (9) is discretized now with the help of the 
finite-difference method along the time axis t  and the space 
axis x . Let U  be the numerical approximation of the solu-
tion of equation (9) at 

n
j

xjx ∆⋅=  and tt n ∆⋅= , with x∆  
being the spatial mesh size (equally spaced, for simplicity) 
and t∆  the time step. After the application of the finite-
difference method in an explicit technique results 
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whereas the subscript 
2
1j ±  points at the middle positions 

between  and .  The mesh discretization parameter is j 1j ±

x
t

∆
∆λ = . (11) 

The vector U  at the time  here is the unknown quantity. 
In order to determine it, one must first determine the vector 

1n +

F , i.e. the numerical flux, at the positions 
2
1j ± . 

 
Application of the Lax-Friedrichs non MUSCL scheme 

In case of second order schemes, the numerical flux F  

can be written at the position 
2
1j ±  utilizing so-called local 

characteristics [12], 
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in which the product  is responsible for achieving the 
second order accuracy. A derivation of the vector  at the 

position 

ΦR ⋅
Φ

2
1j +  can be found in references [12] and [4]. 

The right-eigenvector matrix  of the Jacobian matrix  R
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of F  is the solution of the equation 

∆RBR =⋅⋅−1 , (14) 

where ∆  is the diagonal matrix of the eigenvalues iδ  of B   

aC1 −=δ  C2 =δ  aC3 +=δ  C4 =δ . (15) 

These eigenvalues show the local characteristic direc-
tions and form the base e.g. for the application of the Method 
of Characteristics. This method was originally introduced by 

Riemann [7]. It was used, as a graphical technique, by Jenny 
[6] to calculate flows in engine manifolds, and Seifert [10] 
and Benson et al. [1] employed it, in the form of the Mesh 
Method of Characteristics. 

The adjustment coefficientsα , β  and γ , which describe 
the speed distribution distortion in the cross-section  of the 
stream thread, make the exact determination of the eigenval-
ues of the matrix [
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and  is the local speed of sound of the ideal gas in the 
stream thread. 

a

Although at present (contrary to the classical 1D case), 
no exact solution for  from equation (14) is known, one can 
further reduce the errors introduced for example with the use 
of R  (from classical 1D case) instead of  if  
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and its inverse matrix 
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are used [4]. The resulted equation 
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D3q

1
D3q  

as nearest approximation of the equation (14) can be brought 
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The following notes are to be made here:  
• In the LH member of the equation (19) only the adjust-

ment coefficient α  appears as opposed to in equation 
(14), i.e., β  and γ  disappear together. 

• The equation (19) is valid only, if ω  is zero or very 
small. In fact the magnitude of ω  is small because α  
and κ  are close to one. 

• The matrices in the equation (19) possess an identical 
determinant, and this happens independently of the α , 
ω  and κ  values. 

• The approximation R  is closer to the exact matrix  
from equation (14) than . 
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Roe's averaged state 

Independently of using of ,  or any other form 
instead of  in equation (12) further means 
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U  can be defined either roughly as the arith-

metic average value between U  and U  or much more 
accurately with the help of the so-called average value pro-
cedure of Roe [
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8]. The procedure of Roe supplies the correct 
average, even if it is applied on different sides of a shock 
wave or of another discontinuity. Roe's averaged state for the 
1D PDE and for a perfect gas for example is discussed in ref-
erence [12]. In order to determine Roe's averaged state for the 
quasi 3D-flow model equation (13) is discretized 
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The components of the Jacobian matrix B  are now the aver-
aged values of the state variables. The vectorial equation (21) 
contains four scalar equations. 

The first one is easily fulfilled. In order to be able to 
process the other three scalar equations, the following 
positive auxiliary parameter has to be introduced 
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From these there is the benefit that (22) have not unsteadiness 
(because 0>ε ) and for this reason further only it is applied.  

From the third scalar equation of (21) it results for the 
averaged value of the specific total enthalpy 
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Equation (23) may be applied only in the case C . 
Otherwise, i.e. when C , the unsteadiness from 
the equation (23) is to be treated accordingly [

0C 1jj ≠− +

0C 1jj =− +

4]. 
With help of equation (23) one can now also determine 

Roe's averaged value of the local speed of sound 
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The fourth scalar equation of (21) provides Roe's averaged 
value of the volume fraction of a gas component 
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A procedure to compute 
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κ  can be found in reference [4]. 

 
 

   



PRESENTATION OF THE SIMULATION RESULTS 
AND THEIR COMPARISON WITH THE MEASURE-
MENTS 
 

For validating of the simulation results an AVL 520 one-
cylinder research engine of the laboratory for Power Engi-
neering, Piston and Turbo Machines of the University of Ap-
plied Sciences Hamburg was used. 

The quasi-3D method introduced above is now applied to 
the simulation of the gas exchange processes. The simulation 
results and the pressure measurements are presented here only 
for the flow in the intake pipe. The arrangement of all 
measuring points is represented in the Figure 1. 

mass flow
measuring
point

5

64

1
2 3

7flexible tube

intake
silencer

pressure measuring points

 
Figure 1: Arrangement of all measuring points 
 
Figure 2 (top) shows the 3D computing mesh of the intake 
pipe and intake port segment, i.e., between the flexible join 
tube and the inlet valve, where some typical cross-sections 
and pressure measuring points are marking. 

 

 

Figure 2: Intake pipe, intake pipe segment and inlet port 
mesh with typical cross-sections and pressure 
measuring points (top) and the appropriate ad-
justment coefficients variations (bottom) 

For computing of the adjustment coefficients α , β  and 
γ  variations from Figure 2 (bottom) the 3D-flow simulation 
programs STAR CD and FIRE are used. This simulations are 
accomplished only for a compressible turbulent stady forward 
and reverse airflow through the intake pipe and inlet port. The 
flow speed vectors and isolines in the some cross-sections 
mentioned above are represented in Figure 3. 

 

 
 

Figure 3: Flow speed vectors and isolines in some cross sec-
tions shown in the Figure 2 

 
The analysis of all pressure variations at the measuring 

points shows good agreement between simulations and ex-
periments. Some minor differences occur in any engine oper-
ating points (EOP) because:  
a. only the intake pipe segment from Figures 2 and 3, i.e. 

between the flexible joint tube and inlet valve, is simu-

   



lated with the quasi-3D method and the remainder with 
the 1D method, 

b. no other local loss coefficients for the entire intake pipe 
(quasi-3D segment and 1D remainder) are used in this 
case. Note that this combination is chosen here for easier 
comparison of the simulation methods (for that reason 
the differences between quasi-3D and 1D simulation re-
sults originate only from the influence of the adjustment 
coefficients from Figure 2), and 

c. the supplementary (disregarded in model) wall friction 
and flow distortion due to the flexible joint tube between 
the measuring points 1 and 2 (s. Figures 1 and 4). 

  

 

 
 
Figure 4: Intake pipe speed isolines and geometry 
 

Two comparisons between 1D (with adjustment coeffi-
cients 1,, =γβα ) and quasi-3D (with the adjustment coeffi-
cients from Figure 2) simulation methods are made here by 
EOP 46 (engine speed 2500 rpm and low load, Figure 5) and 
51 (engine speed 2500 rpm and full load, Figure 6).  

The comparison shows that the quasi-3D model works 
better and closer to the experiments and that without any 
adapted local loss coefficients. Although the improvement 
seems to be small, one must note here (because of the sim-
plicity of the intake pipe geometry) that even the 1D method 
works in this case quite well. On the other hand only a seg-
ment of this pipe is treated here with the quasi-3D method as 
mentioned. 

One expects that the differences between quasi-3D and 
1D simulations will be more significant in case of compli-
cated pipe geometry, pipe junctions and manifolds. 

 
Figure 5: Comparisons between quasi-3D and 1D simulation 

methods by EOP 46 at measuring points 2 and 4 
 

 
Figure 6: Comparisons between quasi-3D and 1D simulation 

methods by EOP 51 at measuring points 2 and 4 

   



The quasi-3D method allows one to take into considera-
tion the real distribution of losses along the pipes (as curva-
tures, asymmetry of the pipes and channels etc). On the con-
trary the 1D method requires artificial concentration of the 
distributed losses in some cross sections, which are treated 
during the simulation as discontinuity interfaces or bounda-
ries [11]. On one hand, the treatment of the boundaries is very 
time-consuming and causes convergence problems frequently. 
On the other hand the simulation results are inaccurate close 
to the boundaries. This fact becomes more critical because of 
the complexity of modern manifolds, which requires inserting 
a series of boundaries along a pipe. 
 
CONCLUSION 

The quasi-3D method is introduced here as a compro-
mise between the 1D and true-3D methods. This new method 
improves the quality of the 1D-simulation results noticeably, 
without increasing the cost of computation proportionally.  

For even better accuracy, it is recommended to compute 
the adjustment coefficients for some forward and reverse flow 
rates through all the pipes if for example transition laminar-
turbulent flow could appear. 

One must conclude that for the treatment of multi-pipe 
junctions with the quasi-3D method an appropriate procedure 
is needed. The adjustment coefficients must be computed in 
this case for all flow possibilities (flow direction and some 
flow rates) through these multi-pipe junctions, i.e., the steady 
true-3D simulation must be carried out several times. This 
expense remains still low because in this steady simulation 
only the exit boundary conditions are changed and the com-
puting time makes almost no difference in this case. The ac-
curacy gain of the quasi-3D method will be important be-
cause of the use of appropriate adjustment coefficients, which 
take into consideration the refined real geometry of these 
multi-pipe junctions. 
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